endobj 52 0 obj <> endobj 53 0 obj <>/Font<>/ProcSet[/PDF/Text]>> endobj 54 0 obj <> endobj 55 0 obj <> endobj 56 0 obj <> endobj 57 0 obj <> endobj 58 0 obj <> endobj 59 0 obj <> endobj 60 0 obj <>stream 0000019245 00000 n I.A. h�b```f``ig`c``[� ̀ ��@Q��6�&���7�,}U��[�u�O��7N0��E��=��.�ĩt�� ���#bh��[lh��>����I�Y3��*L�챡������uL`ŁK��u#�-:::�,&��A%�� !�.D�*i@�n@���@�ALIH��X$���e����R!F�M�K8^�rH�-|%t`�B� ������(����(N�yܐA�hȵ@� � �W� インターネットの歴史(インターネットのれきし)は1960年代のパケット通信の研究から始まる技術的な系譜で定義される。, 直接的な関係は無いが、国際的な通信網はインターネットが初めてではなく、電信網が初めてである。19世紀後半には世界中に電信網が張り巡らされ、モールス信号による低速度な符号ベースの通信が行われていた。1940年代までコンピュータは存在せず、電信局の局員によるモールス信号の打鍵あるいは交換器で遠隔地にメッセージが転送される方法が主であったが、その時代にも電子商取引や新聞の伝言スペースへの文章投稿などは行われていた。電信の後に音声を伝達できる電話が考案され、1950年代には、黎明期にあった電子式コンピュータやテレックス網などを用いて、遠隔地のコンピュータ間の通信や端末との通信を行うようになった。インターネットを支える基本技術のひとつである、初期のパケット通信の研究が始められたのは1960年代からであり、人類の国際的な通信網の歴史からすると比較的後発である。ARPANET、イギリス国立物理学研究所のMark I、CYCLADES、メリット・ネットワーク(英語版)、Tymnet(英語版)、Telenet(英語版)といったパケット交換ネットワークが1960年代末から1970年代初めに開発され、様々な通信プロトコルを用いていた。中でもARPANETは、複数のネットワークを相互接続し,ネットワークのネットワークを構築するインターネットワーキングのためのプロトコルの開発へと乗り出した。, 1982年、インターネット・プロトコル・スイート (TCP/IP) が標準化され、TCP/IPを採用したネットワーク群を世界規模で相互接続するインターネットという概念が提唱された。ARPANETへの接続は、1981年にアメリカ国立科学財団 (NSF) がCSNET (Computer Science Network) を開発したときに拡張され、さらに1986年にNSFNETが全米各地の研究教育機関から複数のスーパーコンピュータへの接続を提供した際にも拡張された。営利目的のインターネットサービスプロバイダ (ISP) が1980年代末から1990年代に出現しはじめた。ARPANETは1990年に役目を終える。1995年にNSFNETも役目を終えると、インターネットの商業化が完了し、インターネットの営利目的の利用についての制限がなくなった。, 1990年代半ば以降、インターネットは文化や商業に大きな影響を与えている。電子メールによるほぼ即時の通信、インスタントメッセージ、VoIPによる「電話」、ビデオチャット、World Wide Web とそれによるインターネットコミュニティ、ブログ、ソーシャル・ネットワーキングなどがインターネットによって可能になった。研究教育コミュニティはさらに開発を進め、NSFのvBNS(英語版) (Very high-speed Backbone Network Service)、Internet2、ナショナル・ラムダレール(英語版)などの進化したネットワークを使っている。増大するデータ量が、1 Gbit/s,10 Gbit/s,100 Gbit/s,200 Gbit/s,400 Gbit/s等で動作する光ファイバー網の上でますます高速に転送される。増大するオンラインの情報・知識・商取引・娯楽などに駆り立てられ、インターネットは成長を続けている。, 試算によれば、1993年時点での双方向電気通信でやり取りされた情報の総量のうち、インターネットを使ったものは1%にすぎなかった。2000年にはそれが51%に成長し、2007年には97%以上の情報がインターネット経由でやり取りされている[1]。その後はビッグデータ社会が到来し、IoTと称して、様々なモノがセンサーとしてインターネットに接続されるようになった。その結果として、学習データが豊富に集まるようになり、AI社会が到来した。インターネットは情報の流通の面で、社会に非常に大きな変化を引き起こした。, 世界規模のネットワークを生み出すきっかけを作った先駆者J・C・R・リックライダーは、そのアイデアを1960年1月の論文 Man-Computer Symbiosis で明らかにしている。, 1962年8月、リックライダーとウェルデン・クラークは論文 "On-Line Man Computer Communication" を発表。ネットワーク化された未来を描いた初期の文献の1つである。, 1962年10月、ARPA局長ジャック・ルイナ(英語版)は新たに創設した部門である Information Processing Techniques Office (IPTO) の部長としてリックライダーを雇い、シャイアン山とペンタゴンとSAC本部にあったアメリカ国防総省のメインコンピュータ同士の相互接続を命じた。そこでリックライダーはARPA内で非公式のグループを結成し、コンピュータの研究を進めさせた。IPTOスタッフへのメモで分散ネットワークを描いており、その中で部下や同僚たちを「銀河間コンピュータネットワークのメンバーと関係者」と呼んでいる。IPTOの役割の一部として、3台のネットワーク端末を設置した。1つはサンタモニカの System Development Corporation に、1つはカリフォルニア大学バークレー校の Project GENIE に、残る1つはマサチューセッツ工科大学 (MIT) のCTSSプロジェクトに接続した。この設備の無駄からリックライダーの考えるインターネットワーキングの必要性が明らかとなった。, 彼は1964年にIPTOを離れ、ARPANETが誕生したのはその5年後である。しかし彼のネットワークのビジョンが、ローレンス・ロバーツやロバート・テイラーといった後継者をARPANET開発へと導く原動力となった。1973年から2年間、リックライダーはIPTOの責任者として復帰している[5]。, 問題は結局のところ、個々の物理ネットワークを連結して1つの論理ネットワークを形成する方法ということになる。1960年代、ランド研究所に在席していたポール・バランは、アメリカ軍の委託を受けて故障への耐性が高いネットワークの研究を行った。バランは転送すべき情報を「メッセージブロック」と呼ぶ単位に分割することにした。バランとは別にイギリス国立物理学研究所のドナルド・デービスが「パケット交換」と呼ぶ方式で似たようなネットワークを提案し開発しており、用語としてはこちらが定着した。レナード・クラインロック (MIT) はこの技術を支える数学的理論を構築した。パケット交換は、特に資源が限られている相互接続リンクでは、電話で使われていた回線交換技術よりも帯域利用率が高く応答時間も短かった[6]。, パケット交換は素早いストアアンドフォワード型のネットワーク設計で、メッセージを任意個のパケットに分割し、パケット毎に送信経路を決定する。初期のネットワークはメッセージ交換システム(英語版)を採用しており、固定の経路構造を必要とするため単一障害点を持つ傾向があった。そのためポール・バランの研究では、ネットワークに冗長性を持たせようとした[7]。そこから、インターネットは核攻撃に耐えられるよう設計されたという都市伝説が広く流布することになった[8][9]。, ARPAのIPTOの責任者に昇進したロバート・テイラーは、ネットワークシステムの相互接続というリックライダーの考え方を実現しようとした。MITからローレンス・ロバーツを呼び寄せると、そのようなネットワークの構築プロジェクトを開始。最初のARPANETのリンクは、カリフォルニア大学ロサンゼルス校とスタンフォード研究所 (SRI) の間に確立された。1969年10月29日22:30のことである。, 1969年12月5日までにユタ大学とカリフォルニア大学サンタバーバラ校を加えて、4ノードを相互接続したネットワークになった。ALOHAnetで開発されたアイデアに基づき、ARPANETは急速に成長する。1981年までにホスト数は213に増え、およそ20日に1台のペースで新たなホストが接続されていった[11][12]。, ARPANETは後のインターネットの技術的中核となり、そこで使われる各種技術を開発する場となった。ARPANET開発の中心となったのは Request for Comments (RFC) プロセスであり、インターネットとなってからもプロトコルやシステムを提案し広める手段となっている。"Host Software" と題した RFC 1 は、カリフォルニア大学ロサンゼルス校のスティーブ・クロッカーが書き、1969年4月7日に公開した。このころのことは、1972年のドキュメンタリー映画 Computer Networks: The Heralds of Resource Sharing に描かれている。, ARPANETでの国際協力は、その段階ではほとんどない。いくつかの政治的理由により、ヨーロッパの開発者たちはX.25ネットワークの開発に関わっていた。例外として、1972年にノルウェー地震計アレイ (Norwegian Seismic Array, NORSAR) がARPANETに接続し、1973年にはスウェーデンのターヌム地上局が衛星通信のリンクで接続。同年イギリスのピーター・T・カースティン(英語版)の研究グループも接続しており、当初はロンドン大学の計算機科学研究所だったが、後にユニヴァーシティ・カレッジ・ロンドンに移った[13]。, 1965年、イギリス国立物理学研究所のドナルド・デービスが、パケット交換に基づく全国的なデータ網を提案した。政府はこの提案を採用しなかったが、1970年までにデービスは Mark I と呼ばれるパケット交換網を設計・構築し、多くの学問領域にまたがった研究で使えるようにしてその技術が実用可能であることを示した[14]。1976年には12台のコンピュータと75台の端末装置が接続され、1986年にインターネットに置き換わるまで成長し続けた。, メリット・ネットワーク(英語版)[15]は1966年、Michigan Educational Research Information Triad としてミシガン州の3つの公立大学でコンピュータネットワークを研究し、ミシガン州の教育や経済の発展に寄与することを目的として創設された[16]。設立資金はミシガン州とアメリカ国立科学財団 (NSF) が出し、ミシガン大学アナーバー校とデトロイトのウェイン州立大学にあったIBM製メインフレームシステム間をパケット交換網で相互接続し、1971年12月にはデモ公開した[17]。1972年10月、イーストランシングにあるミシガン州立大学のCDC製メインフレームとも接続し、三者の相互接続が完成。その後数年間で、ホスト同士の対話型接続に加えて、端末とホスト間の接続やホスト間のバッチ型接続(リモートジョブ転送、リモート印刷、バッチファイル転送)や対話型ファイル転送にも対応するよう改良を加えた。また、Tymnet(英語版)とTelenet(英語版)との相互接続、X.25ホスト連結装置対応、X.25データ網とのゲートウェイ、イーサネット対応などを加え、最終的にTCP/IPに対応し、ミシガン州内の他の公立大学もこのネットワークに加わった[17][18]。これら全てにより、1980年代中ごろに始まるNSFNETプロジェクトでメリットが重要な役割を演じることになる。, CYCLADESパケット交換網はフランスの研究ネットワークであり、ルイ・プザンが設計し構築を指揮した。1973年に初公開。初期のARPANETとは別の設計を模索したもので、ネットワーク研究全般に対応していた。データ配送の信頼性をネットワーク自身ではなくホストの責任で保証するという考え方を初めて示したもので、「信頼できないデータグラム」とエンドツーエンドのプロトコル機構を採用している[19][20]。, ARPAの研究に基づき、国際電気通信連合 (ITU) がパケット交換網の標準化を開始し、X.25 と付随する規格案が提案された。パケット通信を使っているが、X.25 は従来の電話回線をエミュレートする仮想回線という考え方で成り立っている。1974年、イギリス国内の学究機関を相互接続する SERCnet で X.25を基盤とし、それが後にJANET(英語版)となった。ITUの最初のX.25規格は1976年3月に承認された[21]。, 1978年、イギリス郵政省(英語版)、ウエスタンユニオン、Tymnetの3者が共同で世界初の国際パケット交換網 International Packet Switched Service (IPSS) を構築。このネットワークはヨーロッパおよびアメリカ合衆国で成長し、1981年までにカナダ、香港、オーストラリアをカバーするようになった。1990年代には世界規模のネットワーク基盤となっている[22]。, ARPANETとは異なり、X.25は主にビジネス用途で使われた。Telenet は主に企業をターゲットとして Telemail という電子メールサービスを提供していた。, 公衆網内で運用される集信装置に達するために、初期のパソコン通信では非同期のTTY端末プロトコルを採用した。CompuServeなどのネットワークは、X.25を使って複数の端末のやりとりを多重化し、パケット交換バックボーンに送り込んでいた。Tymnetなどは独自のプロトコルを使っている。1979年、CompuServeは世界で初めてパーソナルコンピュータの利用者向けに電子メールサービスと技術サポートの提供を開始した。また、1980年には世界初のリアルタイムのチャットシステム CB Simulator のサービスを開始している。他の同様のネットワークとして、America Online (AOL) や Prodigy があり、同様にコミュニケーション、コンテンツ、娯楽などを提供している。また、多数の草の根BBSもオンラインアクセスを提供しており、それらBBS間のネットワークである FidoNet は趣味のコンピュータ利用者の間で人気となった。, 1979年、デューク大学の学生トム・トラスコット(英語版)とジム・エリス(英語版)は、近くのノースカロライナ大学チャペルヒル校とのシリアル回線上で開発されたばかりのUUCPを使ってニュースやメッセージを転送する簡単な Bourne Shell のスクリプトを書いた。このソフトウェアを公開すると、UUCPホストで構成されるメッシュがニュースを次々に転送するようになり、ネットニュース (Usenet) が誕生した。後にこのネットワークをUUCPNetと呼ぶようになり、FidoNetとそれを構成する草の根BBSとも相互接続するようになる。このネットワークはコストがかからないため急速に広がり、電話回線、X.25の回線、さらにはARPANETも巻き込むようになる。草の根的にはじまったため、後のCSNETやBitnetに比べると明確なポリシーがない。1981年にはUUCPホスト数は550となり、1984年にはほぼ倍の940となった。, 数々のネットワーク技法が乱立しており、誰かがそれを統合する必要があった。DARPAとARPANETのロバート・E・カーンは、スタンフォード大学のヴィントン・サーフを招き、二人でこの問題を検討した。1973年、彼らの改善案の基本が完成した。それは、ネットワーク毎のプロトコルの差異を共通のネットワーク間プロトコルで隠蔽し、ARPANETのようにネットワーク自体が信頼性を保証するのではなく、ホストが信頼性を保証するというものである。サーフはこの設計について、ユベール・ジメルマン、Gerard LeLann、ルイ・プザン(CYCLADESネットワークの設計者)の業績が影響を与えたとしている[23]。, その結果生まれたプロトコルの仕様は RFC 675 – Specification of Internet Transmission Control Program として1974年12月に発表された。その中で internetworking の短縮形として internet という語が初めて使われた。その後のRFCでもこの用法を踏襲したため、この語が形容詞としてよりも名詞として定着するようになった。, ネットワークの役割を必要最小限に低減させたため、どんなネットワークでも相互接続可能となり、カーンの考えていた問題を解決することになった。DARPAはプロトタイプ版ソフトウェアの開発に資金提供することに合意し、数年後、スタンフォード研究所がサンフランシスコ・ベイエリアのパケット無線ネットワークとARPANETとのゲートウェイのデモンストレーションを行った。1977年11月22日には、ARPANET、パケット無線ネットワーク、大西洋パケット通信衛星の3つのネットワーク間のデモンストレーションを行っている[24][25]。, 1974年のTCPの最初の仕様から、1978年中ごろ以降にTCP/IPがほぼ最終的な形となって出来上がった。1981年には関連標準が RFC 791, 792、793 として公表され、実際に採用された。DARPAは様々なオペレーティングシステムでのTCP/IP実装の開発を支援・促進し、保有する全ホストのパケット網をTCP/IPに移行させることを計画。1983年1月1日、ARPANETを従来のNCPプロトコルからTCP/IPプロトコルへと移行させた[26]。, ARPANETを立ち上げて運用し続けて数年後、ARPAはそのネットワークを任せられる他の政府機関を探していた。ARPAの主たる使命は先端的な研究開発への支援であり、コミュニケーションの道具を運用することではない。1975年7月、アメリカ国防総省のアメリカ国防情報システム局が引き受けることになった。1983年、ARPANETのアメリカ軍関係部分を分離してMILNET(英語版)とした。MILNETはその後、秘密ではないが軍専用のNIPRNETと、機密レベルの情報を扱うSIPRNETと、極秘レベルのJWICS(英語版)とに分離された。NIPRNETには一般のインターネットとの間にセキュリティ制御されたゲートウェイがある。, ARPANETに基づくこれらのネットワークはアメリカ政府が資金を出しているため、研究などの非商用利用に制限されており、無関係な商用利用は厳しく禁止されていた。このため、当初は軍関係と大学のみが接続できた。1980年代には他の教育機関も接続されるようになり、各種研究プロジェクトへの参加や支援を理由にDECやヒューレット・パッカードといった企業からの接続も増えていった。, アメリカ合衆国連邦政府の他の機関、航空宇宙局 (NASA)、国立科学財団 (NSF)、エネルギー省 (DOE) はインターネット研究に深く関わるようになり、ARPANETの後継となるネットワーク開発を開始した。1980年代中ごろ、この3者がTCP/IPに基づく初の Wide Area Network (WAN) を構築した。NASAが構築したのは NASA Science Network、NSAが構築したのは CSNET、DOEが構築したのは Energy Sciences Network (ESNet) である。, NASAは1980年代中ごろ、TCP/IPに基づく NASA Science Network (NSN) を構築。世界中の宇宙科学者やデータおよび情報を相互接続した。1989年、DECnetに基づく Space Physics Analysis Network (SPAN) とTCP/IPに基づく NSN がエイムズ研究センターで相互接続され、NASA Science Internet (NSI) という世界初のマルチプロトコルのWANとなった。NSIは、NASAの科学コミュニティに完全に統合された通信基盤がもたらすことを目的として構築された。高速で複数プロトコル対応で国際的なネットワークである NSI は、世界中の2万人以上の科学者に接続を提供した。, 1981年、NSFは CSNET (Computer Science Network) を構築した。CSNETはTCP/IPでARPANETと相互接続し、X.25上でTCP/IPを動作させているが、高度なネットワーク接続のない部門のためにダイヤルアップ式の自動電子メール交換もサポートしていた。この経験からNSFはNSFNETを構築する際にTCP/IPを採用した。56 kbit/s のバックボーンが1986年に完成し、NSFのスーパーコンピュータセンターと全米各地の研究および教育ネットワークを相互接続した[27]。ただし、その利用はスーパーコンピュータの利用のみにとどまらなかったため、56 kbit/s のネットワークはすぐさま過負荷に陥った。1988年には 1.5 Mbit/s に更新。NSFNETの存在と Federal Internet Exchange (FIX) の新設により、ARPANETの1990年の退役が可能となった。NSFNETは1991年に 45 Mbit/s へと更新され、その後商用インターネットサービスプロバイダのバックボーン群が代替するようになって1995年に退役となった。, internet という語はTCPプロトコルに関する最初のRFCである RFC 675:[28] Internet Transmission Control Program(1974年12月)で、internetworking の省略形として使われ、同義語として使われていた。一般に internet という語はTCP/IPを使ったネットワーク全般を指す。1980年代後半、ARPANETとNSFNETが相互接続されたころ、この語はそのネットワークを指す固有名詞 Internet として使われるようになり[29]、世界規模のTCP/IPネットワークを指すことになった。, 広域ネットワークへの関心が高まり、その上での新たな用途が開発されるにつれて、インターネット技術は世界中に広まっていった。基盤となる物理ネットワークを問わないTCP/IPの手法は、既存のネットワーク基盤を容易に流用でき、例えば IPSS X.25ネットワーク上でインターネットのトラフィックを転送することも容易である。1984年、ユニバーシティ・カレッジ・ロンドンは大西洋横断の通信衛星リンクを TCP/IP over IPSS に置き換えた[30]。, インターネットに直接接続できない場所では、当時最も重視された用途である電子メールの転送が可能な単純なゲートウェイを設置することが多かった。常時接続できない場所では、UUCPやFidoNetを使ってゲートウェイから電子メールを転送した。一部のゲートウェイは単なる電子メールの中継に留まらず、UUCPや電子メール経由でのFTPサイトへのアクセスも提供していた。, 最終的にインターネットに残っていた経路の集中する部分は除去された。ルーティングプロトコルは、EGPから新たな Border Gateway Protocol (BGP) へと置換された。これによってインターネットはメッシュ型トポロジーとなり、ARPANETの集中型構造から脱却した。1994年、アドレス空間を節約するために Classless Inter-Domain Routing (CIDR) が導入され、ルーティングテーブルの大きさを低減させた[31]。, 1984年から1988年までに、CERNは同機構内の主なコンピュータシステム、ワークステーション、PC、加速器制御システムをTCP/IPで相互接続する作業を行った。CERNは内部ではこのネットワーク CERNET を使い、外部との接続には非互換ないくつかのネットワークプロトコルを使うという状態をしばらく続けた。当時ヨーロッパではTCP/IPの広範囲な採用にはかなりの抵抗があり、CERNのTCP/IPイントラネットは1989年までインターネットとは隔絶していた。, 1988年、アムステルダムの数学・コンピュータ科学センター (CWI) の Daniel Karrenberg がCERNのTCP/IP担当者 Ben Segal を訪ね、ヨーロッパ側の(主にX.25を使用していた)UUCPネットワークをTCP/IPに移行させる件に関して助言を求めた。それに先立って1987年、Ben Segal は当時まだ小さな会社だったシスコシステムズのレン・ボサック(英語版)と会いTCP/IPルーターをいくつか購入していた。そこで、Segal は Karrenberg に助言すると共にシスコのハードウェアを勧めた。これによってヨーロッパでのインターネットは既存のUUCPネットワーク上で広がり、1989年にCERNがTCP/IPで外部と接続されることになった[32]。それと同時にRIPE (Réseaux IP Européens) が結成された。RIPEはIPネットワーク管理者のグループで、定期的に会合を開いて共同作業していた。1992年、RIPEはアムステルダムで協同組合として正式に登録されている。, ヨーロッパでインターネットが広がりを見せつつあったころ、オーストラリアでは X.25 や UUCP などの様々な技術を使い、国内の大学間やアメリカとの場当たり的なネットワークを形成しつつあった。国際電話もX.25の国際的専用線も高価だったため、世界的なネットワークとの接続は限定的だった。1989年、オーストラリアの大学群が共同でIPプロトコルへの移行を推進し、ネットワーク基盤の統合を行うこととした。同年、AARNet(英語版)を結成し、オーストラリアでのIP専用ネットワークの基盤となった。, アジアでは1980年代後半にインターネットが浸透しはじめた。日本では、1984年にUUCPのネットワークであるJUNETを構築し、1989年にNSFNETと接続した。1992年にはインターネット協会の会合である INET'92 を神戸市で開催している。シンガポールは1990年にTECHNETを構築、タイでは1992年にチュラーロンコーン大学がUUNETとインターネット接続したのが最初である[33]。, 技術基盤を持つ先進国がインターネットに参加する一方で、開発途上国はインターネットに参加できず、情報格差を経験しはじめていた。基本的に大陸ごとに、開発途上国はインターネットのリソース管理のための組織を結成し、共同で通信基盤の拡充を進めていった。, 1990年代初めごろ、アフリカ諸国は X.25 IPSS に依存しており、2400bpsのモデムでUUCPを使って海外と接続していた。, 1995年8月、ウガンダのカンパラで InfoMail Uganda, Ltd.(現在のInfoCom)が創業。1997年、コロラド州エイボンの NSN Network Services を買い取って Clear Channel Satellite とし、アフリカ初のTCP/IP高速衛星通信インターネットサービスを開始した。当初はロシアの衛星会社RSCCのCバンドを使って、カンパラとコロラド州を直接繋ぎ、そこからニュージャージー州まで専用線で接続していた。当初の衛星接続は 64 kbit/s しかなく、サンのホストコンピュータ1台とUSロボティクスのダイヤルアップ・モデム12台で運用していた。, 1996年、USAIDの Leland initiative により、アフリカ大陸でのインターネット接続の開発を促すプロジェクトが始まった。1997年にはギニア、モザンビーク、マダガスカル、ルワンダに衛星通信の地上局が建設され、1998年にはコートジボワールとベナンが続いた。, アフリカでは今もインターネット基盤の構築が続いている。モーリシャスに本部のあるAfriNICが、大陸全体のIPアドレス割り当てを管理している。他の地域と同様、運用に関するフォーラムである Internet Community of Operational Networking Specialists がある[34]。, 高速通信施設を建設する計画や大西洋岸から光ケーブルを海底に敷設する計画などがいくつかある。北アフリカとアフリカの角は高速ケーブルで大陸間のケーブルシステムに繋がっている。東アフリカでの海底ケーブル敷設は比較的ゆっくりしている。アフリカ開発のための新パートナーシップ (NEPAD) と East Africa Submarine System (Eassy) が共同開発を計画していたが破綻し、それぞれ独自に行う可能性がある[35]。, Asia-Pacific Network Information Centre (APNIC) はオーストラリアに本部があり、この地域のIPアドレス割り当てを管理している。APNICが後援する運用者フォーラムとして Asia-Pacific Regional Internet Conference on Operational Technologies (APRICOT) がある[36]。, 1991年、中華人民共和国初のTCP/IP大学ネットワーク TUNET が清華大学で運用開始した。中華人民共和国とインターネットとの最初の相互接続は1994年のことで、Beijing Electro-Spectrometer (BES) Collaboration とスタンフォード大学の線型加速器センターを繋いだものである。しかし、中国は国全体でインターネットのコンテンツにフィルターをかけている(中国のネット検閲)[37]。, 他の地域と同様、Latin American and Caribbean Internet Address Registry (LACNIC) がIPアドレス空間や他のリソースを管理している。LACNICはウルグアイに本部があり、ルートサーバの運用なども行っている。, インターネットの商用利用への関心は、熱く討論される話題となってきた。商用利用は禁止されていたが、「商用利用」の明確な定義はなかった。UUCPNet と X.25 IPSS にはそのような制限はなく、ARPANETおよびNSFNETでのネットニュースの使用が公式には禁止されるという結果を招いた。ただし、管理者が目をつぶったため、一部のUUCPリンクが存続した。, 1980年代末、最初のインターネットサービスプロバイダ (ISP) が創業。PSINet、UUNET、Netcom、Portal Software といった企業が出現し、地域の研究ネットワークへのサービスや代替ネットワーク接続手段を提供し、一般へのUUCPによる電子メールとネットニュースの接続手段を提供した。アメリカ合衆国での最初の商用ダイヤルアップISPは The World で、1989年に運用開始した[38]。, 1992年、米連邦議会が Scientific and Advanced-Technology Act(科学および先端技術法案、合衆国法典第42編第1862(g)条 42 U.S.C.

対比 類義語, 英語を教えてくれてありがとうございます 英語, ナイーブ 反対語, エクセル2013 重複チェック, 自分で調べろ 英語, 安田章大 ママベル, 石橋菜津美 ドラマ, 凡百 対義語, 鬼滅の刃 あらすじ, ちゃんと 言い換え ビジネス, 伊藤健太郎 (声優) Tv/映画, エヴァンゲリオン カヲル 死亡, シンエヴァンゲリオン劇場版 ⅱ, 新世紀エヴァンゲリオン 漫画 全巻 中古, 北の国から 初恋 キャスト, エヴァ パチンコ 2018, 新商品 英語 アパレル, きめつのやいば 映画 公式, 西島秀俊 子供 年齢, ローリング ビジネス, 図らずも 例文, エヴァンゲリオン AR, 森七菜 エール, エヴァ 13号機 考察, ドコモ 鬼 滅 の刃, DTV ドラマ, 軽井沢 デザイナーズ別荘, H2 中村倫也, 桜流し 震災, Twitter アプリ内ブラウザ Iphone, 鬼滅の刃 中古 ブックオフ, 流星の絆 キャスト 子役, 内山昂輝 目撃, ある分野の 内容 に詳しい人, 碇ゲンドウ 裏列界反復練習さ カヲル, スマホで調べた 英語, 北の国から 女優, アジア州 国, あなたをタグ付けできる 意味, ファイナルカットプロ Ipad, ご丁寧なご対応ありがとうございます 英語, 鵜 読み, Redundant Configuration, マメじゃない 英語, Twitter トレンド 問題が発生しました, 総理 官邸 アクセス, アナウィンター インスタ, 怪しい 意味, プラダを着た悪魔 映画, 鳥の名前 かわいい, 分かりやすいように 英語, 織斑 一夏, Twitterトレンド 更新 されない, Twitter 同一人物 特定, エヴァ ありがとう, 侍 歌, エヴァ なんJ SS, 固有 類義語, 松ぼっくりフクロウ 作り方, 炭治郎 耳飾り 型紙, 下野紘 吹き替え 洋画, 山下智久 The Head インタビュー, CR新世紀エヴァンゲリオン~最後の シ 者, サムライロック 販売店, エヴァ 使徒の数, フォロワー 推移 リアルタイム, 徹子の部屋 佐藤友美, " />

2000年 インターネット

インターネットの黎明(れいめい)期となる1996年に創設され、650人のウェブのエキスパートやビジネスパーソン、クリエイティブな人々などで構成された「The International Academy of … 0000017391 00000 n

0000005238 00000 n マーケティングにおけるインターネット調査の 実状と課題 (株)電通リサーチ* 横 原 東** (2000 年11 月2 日,統計数理研究所講堂) 1. 1996~2000 adslの普及、光回線の登場等により低価格化が進み、 一般家庭にますますインターネットが普及。 日本におけるインターネットの歴史 0000010262 00000 n 89 0 obj <>stream 0000007718 00000 n 0000018807 00000 n "The RFC Series and RFC Editor", L. Daigle. 0000017763 00000 n 0000004708 00000 n 0 97-2412 (TFH), Sec. 0000008124 00000 n 1995年にMicrosoftが発売したWindows95は、インターネットが一般に普及する大きな契機となったといわれている。 endstream endobj 51 0 obj <> endobj 52 0 obj <> endobj 53 0 obj <>/Font<>/ProcSet[/PDF/Text]>> endobj 54 0 obj <> endobj 55 0 obj <> endobj 56 0 obj <> endobj 57 0 obj <> endobj 58 0 obj <> endobj 59 0 obj <> endobj 60 0 obj <>stream 0000019245 00000 n I.A. h�b```f``ig`c``[� ̀ ��@Q��6�&���7�,}U��[�u�O��7N0��E��=��.�ĩt�� ���#bh��[lh��>����I�Y3��*L�챡������uL`ŁK��u#�-:::�,&��A%�� !�.D�*i@�n@���@�ALIH��X$���e����R!F�M�K8^�rH�-|%t`�B� ������(����(N�yܐA�hȵ@� � �W� インターネットの歴史(インターネットのれきし)は1960年代のパケット通信の研究から始まる技術的な系譜で定義される。, 直接的な関係は無いが、国際的な通信網はインターネットが初めてではなく、電信網が初めてである。19世紀後半には世界中に電信網が張り巡らされ、モールス信号による低速度な符号ベースの通信が行われていた。1940年代までコンピュータは存在せず、電信局の局員によるモールス信号の打鍵あるいは交換器で遠隔地にメッセージが転送される方法が主であったが、その時代にも電子商取引や新聞の伝言スペースへの文章投稿などは行われていた。電信の後に音声を伝達できる電話が考案され、1950年代には、黎明期にあった電子式コンピュータやテレックス網などを用いて、遠隔地のコンピュータ間の通信や端末との通信を行うようになった。インターネットを支える基本技術のひとつである、初期のパケット通信の研究が始められたのは1960年代からであり、人類の国際的な通信網の歴史からすると比較的後発である。ARPANET、イギリス国立物理学研究所のMark I、CYCLADES、メリット・ネットワーク(英語版)、Tymnet(英語版)、Telenet(英語版)といったパケット交換ネットワークが1960年代末から1970年代初めに開発され、様々な通信プロトコルを用いていた。中でもARPANETは、複数のネットワークを相互接続し,ネットワークのネットワークを構築するインターネットワーキングのためのプロトコルの開発へと乗り出した。, 1982年、インターネット・プロトコル・スイート (TCP/IP) が標準化され、TCP/IPを採用したネットワーク群を世界規模で相互接続するインターネットという概念が提唱された。ARPANETへの接続は、1981年にアメリカ国立科学財団 (NSF) がCSNET (Computer Science Network) を開発したときに拡張され、さらに1986年にNSFNETが全米各地の研究教育機関から複数のスーパーコンピュータへの接続を提供した際にも拡張された。営利目的のインターネットサービスプロバイダ (ISP) が1980年代末から1990年代に出現しはじめた。ARPANETは1990年に役目を終える。1995年にNSFNETも役目を終えると、インターネットの商業化が完了し、インターネットの営利目的の利用についての制限がなくなった。, 1990年代半ば以降、インターネットは文化や商業に大きな影響を与えている。電子メールによるほぼ即時の通信、インスタントメッセージ、VoIPによる「電話」、ビデオチャット、World Wide Web とそれによるインターネットコミュニティ、ブログ、ソーシャル・ネットワーキングなどがインターネットによって可能になった。研究教育コミュニティはさらに開発を進め、NSFのvBNS(英語版) (Very high-speed Backbone Network Service)、Internet2、ナショナル・ラムダレール(英語版)などの進化したネットワークを使っている。増大するデータ量が、1 Gbit/s,10 Gbit/s,100 Gbit/s,200 Gbit/s,400 Gbit/s等で動作する光ファイバー網の上でますます高速に転送される。増大するオンラインの情報・知識・商取引・娯楽などに駆り立てられ、インターネットは成長を続けている。, 試算によれば、1993年時点での双方向電気通信でやり取りされた情報の総量のうち、インターネットを使ったものは1%にすぎなかった。2000年にはそれが51%に成長し、2007年には97%以上の情報がインターネット経由でやり取りされている[1]。その後はビッグデータ社会が到来し、IoTと称して、様々なモノがセンサーとしてインターネットに接続されるようになった。その結果として、学習データが豊富に集まるようになり、AI社会が到来した。インターネットは情報の流通の面で、社会に非常に大きな変化を引き起こした。, 世界規模のネットワークを生み出すきっかけを作った先駆者J・C・R・リックライダーは、そのアイデアを1960年1月の論文 Man-Computer Symbiosis で明らかにしている。, 1962年8月、リックライダーとウェルデン・クラークは論文 "On-Line Man Computer Communication" を発表。ネットワーク化された未来を描いた初期の文献の1つである。, 1962年10月、ARPA局長ジャック・ルイナ(英語版)は新たに創設した部門である Information Processing Techniques Office (IPTO) の部長としてリックライダーを雇い、シャイアン山とペンタゴンとSAC本部にあったアメリカ国防総省のメインコンピュータ同士の相互接続を命じた。そこでリックライダーはARPA内で非公式のグループを結成し、コンピュータの研究を進めさせた。IPTOスタッフへのメモで分散ネットワークを描いており、その中で部下や同僚たちを「銀河間コンピュータネットワークのメンバーと関係者」と呼んでいる。IPTOの役割の一部として、3台のネットワーク端末を設置した。1つはサンタモニカの System Development Corporation に、1つはカリフォルニア大学バークレー校の Project GENIE に、残る1つはマサチューセッツ工科大学 (MIT) のCTSSプロジェクトに接続した。この設備の無駄からリックライダーの考えるインターネットワーキングの必要性が明らかとなった。, 彼は1964年にIPTOを離れ、ARPANETが誕生したのはその5年後である。しかし彼のネットワークのビジョンが、ローレンス・ロバーツやロバート・テイラーといった後継者をARPANET開発へと導く原動力となった。1973年から2年間、リックライダーはIPTOの責任者として復帰している[5]。, 問題は結局のところ、個々の物理ネットワークを連結して1つの論理ネットワークを形成する方法ということになる。1960年代、ランド研究所に在席していたポール・バランは、アメリカ軍の委託を受けて故障への耐性が高いネットワークの研究を行った。バランは転送すべき情報を「メッセージブロック」と呼ぶ単位に分割することにした。バランとは別にイギリス国立物理学研究所のドナルド・デービスが「パケット交換」と呼ぶ方式で似たようなネットワークを提案し開発しており、用語としてはこちらが定着した。レナード・クラインロック (MIT) はこの技術を支える数学的理論を構築した。パケット交換は、特に資源が限られている相互接続リンクでは、電話で使われていた回線交換技術よりも帯域利用率が高く応答時間も短かった[6]。, パケット交換は素早いストアアンドフォワード型のネットワーク設計で、メッセージを任意個のパケットに分割し、パケット毎に送信経路を決定する。初期のネットワークはメッセージ交換システム(英語版)を採用しており、固定の経路構造を必要とするため単一障害点を持つ傾向があった。そのためポール・バランの研究では、ネットワークに冗長性を持たせようとした[7]。そこから、インターネットは核攻撃に耐えられるよう設計されたという都市伝説が広く流布することになった[8][9]。, ARPAのIPTOの責任者に昇進したロバート・テイラーは、ネットワークシステムの相互接続というリックライダーの考え方を実現しようとした。MITからローレンス・ロバーツを呼び寄せると、そのようなネットワークの構築プロジェクトを開始。最初のARPANETのリンクは、カリフォルニア大学ロサンゼルス校とスタンフォード研究所 (SRI) の間に確立された。1969年10月29日22:30のことである。, 1969年12月5日までにユタ大学とカリフォルニア大学サンタバーバラ校を加えて、4ノードを相互接続したネットワークになった。ALOHAnetで開発されたアイデアに基づき、ARPANETは急速に成長する。1981年までにホスト数は213に増え、およそ20日に1台のペースで新たなホストが接続されていった[11][12]。, ARPANETは後のインターネットの技術的中核となり、そこで使われる各種技術を開発する場となった。ARPANET開発の中心となったのは Request for Comments (RFC) プロセスであり、インターネットとなってからもプロトコルやシステムを提案し広める手段となっている。"Host Software" と題した RFC 1 は、カリフォルニア大学ロサンゼルス校のスティーブ・クロッカーが書き、1969年4月7日に公開した。このころのことは、1972年のドキュメンタリー映画 Computer Networks: The Heralds of Resource Sharing に描かれている。, ARPANETでの国際協力は、その段階ではほとんどない。いくつかの政治的理由により、ヨーロッパの開発者たちはX.25ネットワークの開発に関わっていた。例外として、1972年にノルウェー地震計アレイ (Norwegian Seismic Array, NORSAR) がARPANETに接続し、1973年にはスウェーデンのターヌム地上局が衛星通信のリンクで接続。同年イギリスのピーター・T・カースティン(英語版)の研究グループも接続しており、当初はロンドン大学の計算機科学研究所だったが、後にユニヴァーシティ・カレッジ・ロンドンに移った[13]。, 1965年、イギリス国立物理学研究所のドナルド・デービスが、パケット交換に基づく全国的なデータ網を提案した。政府はこの提案を採用しなかったが、1970年までにデービスは Mark I と呼ばれるパケット交換網を設計・構築し、多くの学問領域にまたがった研究で使えるようにしてその技術が実用可能であることを示した[14]。1976年には12台のコンピュータと75台の端末装置が接続され、1986年にインターネットに置き換わるまで成長し続けた。, メリット・ネットワーク(英語版)[15]は1966年、Michigan Educational Research Information Triad としてミシガン州の3つの公立大学でコンピュータネットワークを研究し、ミシガン州の教育や経済の発展に寄与することを目的として創設された[16]。設立資金はミシガン州とアメリカ国立科学財団 (NSF) が出し、ミシガン大学アナーバー校とデトロイトのウェイン州立大学にあったIBM製メインフレームシステム間をパケット交換網で相互接続し、1971年12月にはデモ公開した[17]。1972年10月、イーストランシングにあるミシガン州立大学のCDC製メインフレームとも接続し、三者の相互接続が完成。その後数年間で、ホスト同士の対話型接続に加えて、端末とホスト間の接続やホスト間のバッチ型接続(リモートジョブ転送、リモート印刷、バッチファイル転送)や対話型ファイル転送にも対応するよう改良を加えた。また、Tymnet(英語版)とTelenet(英語版)との相互接続、X.25ホスト連結装置対応、X.25データ網とのゲートウェイ、イーサネット対応などを加え、最終的にTCP/IPに対応し、ミシガン州内の他の公立大学もこのネットワークに加わった[17][18]。これら全てにより、1980年代中ごろに始まるNSFNETプロジェクトでメリットが重要な役割を演じることになる。, CYCLADESパケット交換網はフランスの研究ネットワークであり、ルイ・プザンが設計し構築を指揮した。1973年に初公開。初期のARPANETとは別の設計を模索したもので、ネットワーク研究全般に対応していた。データ配送の信頼性をネットワーク自身ではなくホストの責任で保証するという考え方を初めて示したもので、「信頼できないデータグラム」とエンドツーエンドのプロトコル機構を採用している[19][20]。, ARPAの研究に基づき、国際電気通信連合 (ITU) がパケット交換網の標準化を開始し、X.25 と付随する規格案が提案された。パケット通信を使っているが、X.25 は従来の電話回線をエミュレートする仮想回線という考え方で成り立っている。1974年、イギリス国内の学究機関を相互接続する SERCnet で X.25を基盤とし、それが後にJANET(英語版)となった。ITUの最初のX.25規格は1976年3月に承認された[21]。, 1978年、イギリス郵政省(英語版)、ウエスタンユニオン、Tymnetの3者が共同で世界初の国際パケット交換網 International Packet Switched Service (IPSS) を構築。このネットワークはヨーロッパおよびアメリカ合衆国で成長し、1981年までにカナダ、香港、オーストラリアをカバーするようになった。1990年代には世界規模のネットワーク基盤となっている[22]。, ARPANETとは異なり、X.25は主にビジネス用途で使われた。Telenet は主に企業をターゲットとして Telemail という電子メールサービスを提供していた。, 公衆網内で運用される集信装置に達するために、初期のパソコン通信では非同期のTTY端末プロトコルを採用した。CompuServeなどのネットワークは、X.25を使って複数の端末のやりとりを多重化し、パケット交換バックボーンに送り込んでいた。Tymnetなどは独自のプロトコルを使っている。1979年、CompuServeは世界で初めてパーソナルコンピュータの利用者向けに電子メールサービスと技術サポートの提供を開始した。また、1980年には世界初のリアルタイムのチャットシステム CB Simulator のサービスを開始している。他の同様のネットワークとして、America Online (AOL) や Prodigy があり、同様にコミュニケーション、コンテンツ、娯楽などを提供している。また、多数の草の根BBSもオンラインアクセスを提供しており、それらBBS間のネットワークである FidoNet は趣味のコンピュータ利用者の間で人気となった。, 1979年、デューク大学の学生トム・トラスコット(英語版)とジム・エリス(英語版)は、近くのノースカロライナ大学チャペルヒル校とのシリアル回線上で開発されたばかりのUUCPを使ってニュースやメッセージを転送する簡単な Bourne Shell のスクリプトを書いた。このソフトウェアを公開すると、UUCPホストで構成されるメッシュがニュースを次々に転送するようになり、ネットニュース (Usenet) が誕生した。後にこのネットワークをUUCPNetと呼ぶようになり、FidoNetとそれを構成する草の根BBSとも相互接続するようになる。このネットワークはコストがかからないため急速に広がり、電話回線、X.25の回線、さらにはARPANETも巻き込むようになる。草の根的にはじまったため、後のCSNETやBitnetに比べると明確なポリシーがない。1981年にはUUCPホスト数は550となり、1984年にはほぼ倍の940となった。, 数々のネットワーク技法が乱立しており、誰かがそれを統合する必要があった。DARPAとARPANETのロバート・E・カーンは、スタンフォード大学のヴィントン・サーフを招き、二人でこの問題を検討した。1973年、彼らの改善案の基本が完成した。それは、ネットワーク毎のプロトコルの差異を共通のネットワーク間プロトコルで隠蔽し、ARPANETのようにネットワーク自体が信頼性を保証するのではなく、ホストが信頼性を保証するというものである。サーフはこの設計について、ユベール・ジメルマン、Gerard LeLann、ルイ・プザン(CYCLADESネットワークの設計者)の業績が影響を与えたとしている[23]。, その結果生まれたプロトコルの仕様は RFC 675 – Specification of Internet Transmission Control Program として1974年12月に発表された。その中で internetworking の短縮形として internet という語が初めて使われた。その後のRFCでもこの用法を踏襲したため、この語が形容詞としてよりも名詞として定着するようになった。, ネットワークの役割を必要最小限に低減させたため、どんなネットワークでも相互接続可能となり、カーンの考えていた問題を解決することになった。DARPAはプロトタイプ版ソフトウェアの開発に資金提供することに合意し、数年後、スタンフォード研究所がサンフランシスコ・ベイエリアのパケット無線ネットワークとARPANETとのゲートウェイのデモンストレーションを行った。1977年11月22日には、ARPANET、パケット無線ネットワーク、大西洋パケット通信衛星の3つのネットワーク間のデモンストレーションを行っている[24][25]。, 1974年のTCPの最初の仕様から、1978年中ごろ以降にTCP/IPがほぼ最終的な形となって出来上がった。1981年には関連標準が RFC 791, 792、793 として公表され、実際に採用された。DARPAは様々なオペレーティングシステムでのTCP/IP実装の開発を支援・促進し、保有する全ホストのパケット網をTCP/IPに移行させることを計画。1983年1月1日、ARPANETを従来のNCPプロトコルからTCP/IPプロトコルへと移行させた[26]。, ARPANETを立ち上げて運用し続けて数年後、ARPAはそのネットワークを任せられる他の政府機関を探していた。ARPAの主たる使命は先端的な研究開発への支援であり、コミュニケーションの道具を運用することではない。1975年7月、アメリカ国防総省のアメリカ国防情報システム局が引き受けることになった。1983年、ARPANETのアメリカ軍関係部分を分離してMILNET(英語版)とした。MILNETはその後、秘密ではないが軍専用のNIPRNETと、機密レベルの情報を扱うSIPRNETと、極秘レベルのJWICS(英語版)とに分離された。NIPRNETには一般のインターネットとの間にセキュリティ制御されたゲートウェイがある。, ARPANETに基づくこれらのネットワークはアメリカ政府が資金を出しているため、研究などの非商用利用に制限されており、無関係な商用利用は厳しく禁止されていた。このため、当初は軍関係と大学のみが接続できた。1980年代には他の教育機関も接続されるようになり、各種研究プロジェクトへの参加や支援を理由にDECやヒューレット・パッカードといった企業からの接続も増えていった。, アメリカ合衆国連邦政府の他の機関、航空宇宙局 (NASA)、国立科学財団 (NSF)、エネルギー省 (DOE) はインターネット研究に深く関わるようになり、ARPANETの後継となるネットワーク開発を開始した。1980年代中ごろ、この3者がTCP/IPに基づく初の Wide Area Network (WAN) を構築した。NASAが構築したのは NASA Science Network、NSAが構築したのは CSNET、DOEが構築したのは Energy Sciences Network (ESNet) である。, NASAは1980年代中ごろ、TCP/IPに基づく NASA Science Network (NSN) を構築。世界中の宇宙科学者やデータおよび情報を相互接続した。1989年、DECnetに基づく Space Physics Analysis Network (SPAN) とTCP/IPに基づく NSN がエイムズ研究センターで相互接続され、NASA Science Internet (NSI) という世界初のマルチプロトコルのWANとなった。NSIは、NASAの科学コミュニティに完全に統合された通信基盤がもたらすことを目的として構築された。高速で複数プロトコル対応で国際的なネットワークである NSI は、世界中の2万人以上の科学者に接続を提供した。, 1981年、NSFは CSNET (Computer Science Network) を構築した。CSNETはTCP/IPでARPANETと相互接続し、X.25上でTCP/IPを動作させているが、高度なネットワーク接続のない部門のためにダイヤルアップ式の自動電子メール交換もサポートしていた。この経験からNSFはNSFNETを構築する際にTCP/IPを採用した。56 kbit/s のバックボーンが1986年に完成し、NSFのスーパーコンピュータセンターと全米各地の研究および教育ネットワークを相互接続した[27]。ただし、その利用はスーパーコンピュータの利用のみにとどまらなかったため、56 kbit/s のネットワークはすぐさま過負荷に陥った。1988年には 1.5 Mbit/s に更新。NSFNETの存在と Federal Internet Exchange (FIX) の新設により、ARPANETの1990年の退役が可能となった。NSFNETは1991年に 45 Mbit/s へと更新され、その後商用インターネットサービスプロバイダのバックボーン群が代替するようになって1995年に退役となった。, internet という語はTCPプロトコルに関する最初のRFCである RFC 675:[28] Internet Transmission Control Program(1974年12月)で、internetworking の省略形として使われ、同義語として使われていた。一般に internet という語はTCP/IPを使ったネットワーク全般を指す。1980年代後半、ARPANETとNSFNETが相互接続されたころ、この語はそのネットワークを指す固有名詞 Internet として使われるようになり[29]、世界規模のTCP/IPネットワークを指すことになった。, 広域ネットワークへの関心が高まり、その上での新たな用途が開発されるにつれて、インターネット技術は世界中に広まっていった。基盤となる物理ネットワークを問わないTCP/IPの手法は、既存のネットワーク基盤を容易に流用でき、例えば IPSS X.25ネットワーク上でインターネットのトラフィックを転送することも容易である。1984年、ユニバーシティ・カレッジ・ロンドンは大西洋横断の通信衛星リンクを TCP/IP over IPSS に置き換えた[30]。, インターネットに直接接続できない場所では、当時最も重視された用途である電子メールの転送が可能な単純なゲートウェイを設置することが多かった。常時接続できない場所では、UUCPやFidoNetを使ってゲートウェイから電子メールを転送した。一部のゲートウェイは単なる電子メールの中継に留まらず、UUCPや電子メール経由でのFTPサイトへのアクセスも提供していた。, 最終的にインターネットに残っていた経路の集中する部分は除去された。ルーティングプロトコルは、EGPから新たな Border Gateway Protocol (BGP) へと置換された。これによってインターネットはメッシュ型トポロジーとなり、ARPANETの集中型構造から脱却した。1994年、アドレス空間を節約するために Classless Inter-Domain Routing (CIDR) が導入され、ルーティングテーブルの大きさを低減させた[31]。, 1984年から1988年までに、CERNは同機構内の主なコンピュータシステム、ワークステーション、PC、加速器制御システムをTCP/IPで相互接続する作業を行った。CERNは内部ではこのネットワーク CERNET を使い、外部との接続には非互換ないくつかのネットワークプロトコルを使うという状態をしばらく続けた。当時ヨーロッパではTCP/IPの広範囲な採用にはかなりの抵抗があり、CERNのTCP/IPイントラネットは1989年までインターネットとは隔絶していた。, 1988年、アムステルダムの数学・コンピュータ科学センター (CWI) の Daniel Karrenberg がCERNのTCP/IP担当者 Ben Segal を訪ね、ヨーロッパ側の(主にX.25を使用していた)UUCPネットワークをTCP/IPに移行させる件に関して助言を求めた。それに先立って1987年、Ben Segal は当時まだ小さな会社だったシスコシステムズのレン・ボサック(英語版)と会いTCP/IPルーターをいくつか購入していた。そこで、Segal は Karrenberg に助言すると共にシスコのハードウェアを勧めた。これによってヨーロッパでのインターネットは既存のUUCPネットワーク上で広がり、1989年にCERNがTCP/IPで外部と接続されることになった[32]。それと同時にRIPE (Réseaux IP Européens) が結成された。RIPEはIPネットワーク管理者のグループで、定期的に会合を開いて共同作業していた。1992年、RIPEはアムステルダムで協同組合として正式に登録されている。, ヨーロッパでインターネットが広がりを見せつつあったころ、オーストラリアでは X.25 や UUCP などの様々な技術を使い、国内の大学間やアメリカとの場当たり的なネットワークを形成しつつあった。国際電話もX.25の国際的専用線も高価だったため、世界的なネットワークとの接続は限定的だった。1989年、オーストラリアの大学群が共同でIPプロトコルへの移行を推進し、ネットワーク基盤の統合を行うこととした。同年、AARNet(英語版)を結成し、オーストラリアでのIP専用ネットワークの基盤となった。, アジアでは1980年代後半にインターネットが浸透しはじめた。日本では、1984年にUUCPのネットワークであるJUNETを構築し、1989年にNSFNETと接続した。1992年にはインターネット協会の会合である INET'92 を神戸市で開催している。シンガポールは1990年にTECHNETを構築、タイでは1992年にチュラーロンコーン大学がUUNETとインターネット接続したのが最初である[33]。, 技術基盤を持つ先進国がインターネットに参加する一方で、開発途上国はインターネットに参加できず、情報格差を経験しはじめていた。基本的に大陸ごとに、開発途上国はインターネットのリソース管理のための組織を結成し、共同で通信基盤の拡充を進めていった。, 1990年代初めごろ、アフリカ諸国は X.25 IPSS に依存しており、2400bpsのモデムでUUCPを使って海外と接続していた。, 1995年8月、ウガンダのカンパラで InfoMail Uganda, Ltd.(現在のInfoCom)が創業。1997年、コロラド州エイボンの NSN Network Services を買い取って Clear Channel Satellite とし、アフリカ初のTCP/IP高速衛星通信インターネットサービスを開始した。当初はロシアの衛星会社RSCCのCバンドを使って、カンパラとコロラド州を直接繋ぎ、そこからニュージャージー州まで専用線で接続していた。当初の衛星接続は 64 kbit/s しかなく、サンのホストコンピュータ1台とUSロボティクスのダイヤルアップ・モデム12台で運用していた。, 1996年、USAIDの Leland initiative により、アフリカ大陸でのインターネット接続の開発を促すプロジェクトが始まった。1997年にはギニア、モザンビーク、マダガスカル、ルワンダに衛星通信の地上局が建設され、1998年にはコートジボワールとベナンが続いた。, アフリカでは今もインターネット基盤の構築が続いている。モーリシャスに本部のあるAfriNICが、大陸全体のIPアドレス割り当てを管理している。他の地域と同様、運用に関するフォーラムである Internet Community of Operational Networking Specialists がある[34]。, 高速通信施設を建設する計画や大西洋岸から光ケーブルを海底に敷設する計画などがいくつかある。北アフリカとアフリカの角は高速ケーブルで大陸間のケーブルシステムに繋がっている。東アフリカでの海底ケーブル敷設は比較的ゆっくりしている。アフリカ開発のための新パートナーシップ (NEPAD) と East Africa Submarine System (Eassy) が共同開発を計画していたが破綻し、それぞれ独自に行う可能性がある[35]。, Asia-Pacific Network Information Centre (APNIC) はオーストラリアに本部があり、この地域のIPアドレス割り当てを管理している。APNICが後援する運用者フォーラムとして Asia-Pacific Regional Internet Conference on Operational Technologies (APRICOT) がある[36]。, 1991年、中華人民共和国初のTCP/IP大学ネットワーク TUNET が清華大学で運用開始した。中華人民共和国とインターネットとの最初の相互接続は1994年のことで、Beijing Electro-Spectrometer (BES) Collaboration とスタンフォード大学の線型加速器センターを繋いだものである。しかし、中国は国全体でインターネットのコンテンツにフィルターをかけている(中国のネット検閲)[37]。, 他の地域と同様、Latin American and Caribbean Internet Address Registry (LACNIC) がIPアドレス空間や他のリソースを管理している。LACNICはウルグアイに本部があり、ルートサーバの運用なども行っている。, インターネットの商用利用への関心は、熱く討論される話題となってきた。商用利用は禁止されていたが、「商用利用」の明確な定義はなかった。UUCPNet と X.25 IPSS にはそのような制限はなく、ARPANETおよびNSFNETでのネットニュースの使用が公式には禁止されるという結果を招いた。ただし、管理者が目をつぶったため、一部のUUCPリンクが存続した。, 1980年代末、最初のインターネットサービスプロバイダ (ISP) が創業。PSINet、UUNET、Netcom、Portal Software といった企業が出現し、地域の研究ネットワークへのサービスや代替ネットワーク接続手段を提供し、一般へのUUCPによる電子メールとネットニュースの接続手段を提供した。アメリカ合衆国での最初の商用ダイヤルアップISPは The World で、1989年に運用開始した[38]。, 1992年、米連邦議会が Scientific and Advanced-Technology Act(科学および先端技術法案、合衆国法典第42編第1862(g)条 42 U.S.C.



対比 類義語, 英語を教えてくれてありがとうございます 英語, ナイーブ 反対語, エクセル2013 重複チェック, 自分で調べろ 英語, 安田章大 ママベル, 石橋菜津美 ドラマ, 凡百 対義語, 鬼滅の刃 あらすじ, ちゃんと 言い換え ビジネス, 伊藤健太郎 (声優) Tv/映画, エヴァンゲリオン カヲル 死亡, シンエヴァンゲリオン劇場版 ⅱ, 新世紀エヴァンゲリオン 漫画 全巻 中古, 北の国から 初恋 キャスト, エヴァ パチンコ 2018, 新商品 英語 アパレル, きめつのやいば 映画 公式, 西島秀俊 子供 年齢, ローリング ビジネス, 図らずも 例文, エヴァンゲリオン AR, 森七菜 エール, エヴァ 13号機 考察, ドコモ 鬼 滅 の刃, DTV ドラマ, 軽井沢 デザイナーズ別荘, H2 中村倫也, 桜流し 震災, Twitter アプリ内ブラウザ Iphone, 鬼滅の刃 中古 ブックオフ, 流星の絆 キャスト 子役, 内山昂輝 目撃, ある分野の 内容 に詳しい人, 碇ゲンドウ 裏列界反復練習さ カヲル, スマホで調べた 英語, 北の国から 女優, アジア州 国, あなたをタグ付けできる 意味, ファイナルカットプロ Ipad, ご丁寧なご対応ありがとうございます 英語, 鵜 読み, Redundant Configuration, マメじゃない 英語, Twitter トレンド 問題が発生しました, 総理 官邸 アクセス, アナウィンター インスタ, 怪しい 意味, プラダを着た悪魔 映画, 鳥の名前 かわいい, 分かりやすいように 英語, 織斑 一夏, Twitterトレンド 更新 されない, Twitter 同一人物 特定, エヴァ ありがとう, 侍 歌, エヴァ なんJ SS, 固有 類義語, 松ぼっくりフクロウ 作り方, 炭治郎 耳飾り 型紙, 下野紘 吹き替え 洋画, 山下智久 The Head インタビュー, CR新世紀エヴァンゲリオン~最後の シ 者, サムライロック 販売店, エヴァ 使徒の数, フォロワー 推移 リアルタイム, 徹子の部屋 佐藤友美,



フィット・フォー・ライフのすすめの最新記事